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Abstract
Mutually unbiased bases (MUBs) are important in quantum information theory.
While constructions of complete sets of d + 1 MUBs in C

d are known when
d is a prime power, it is unknown if such complete sets exist in non-prime
power dimensions. It has been conjectured that complete sets of MUBs only
exist in C

d if a maximal set of mutually orthogonal Latin squares (MOLS)
of side length d also exists. There are several constructions (Roy and Scott
2007 J. Math. Phys. 48 072110; Paterek, Dakić and Brukner 2009 Phys. Rev.
A 79 012109) of complete sets of MUBs from specific types of MOLS, which
use Galois fields to construct the vectors of the MUBs. In this paper, two
known constructions of MUBs (Alltop 1980 IEEE Trans. Inf. Theory 26 350–
354; Wootters and Fields 1989 Ann. Phys. 191 363–381), both of which use
polynomials over a Galois field, are used to construct complete sets of MOLS
in the odd prime case. The MOLS come from the inner products of pairs of
vectors in the MUBs.

PACS numbers: 03.65.Fd, 02.10.Ox

1. Introduction

Mutually unbiased bases (MUBs) are an important tool in quantum physics. It is conjectured
that the existence of a complete set of MUBs in C

d is linked to the existence of a complete
set of mutually orthogonal Latin squares (MOLS) of side length d [1]. While there are
several constructions of complete sets of MUBs from complete sets of specific types of MOLS
[12, 13], no one seems to have gone from MUBs to MOLS. In this paper we show a way to
construct MOLS from MUBs in odd prime dimensions, using the inner product vectors in the
MUBs.
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http://dx.doi.org/10.1088/1751-8113/43/13/135302
mailto:joanne.hall@rmit.edu.au
mailto:asha@rmit.edu.au
http://stacks.iop.org/JPhysA/43/135302


J. Phys. A: Math. Theor. 43 (2010) 135302 J L Hall and A Rao

A basis for C
d is orthonormal if all basis vectors are orthogonal and of unit length. Two

orthonormal bases B and B′ in C
d are called mutually unbiased if and only if |〈φ|ψ〉|2 = 1/d

for all φ ∈ B and ψ ∈ B′.
Given two MUBs, a measurement in one basis leaves complete uncertainty as to the

outcome of a measurement over the second basis. This feature is exploited in a cryptographic
protocol [2] to securely distribute secret keys over a public channel. Thus MUBs may be
a key feature in quantum cryptography in the future. MUBs are also used in quantum state
determination—they provide a way to design the optimal set of measurements for determining
an ensemble’s state [3]. Sets of d + 1 MUBs in C

d are called complete and are known to exist
if d is a prime power. In the non-prime power case, it is not known if complete sets of MUBs
exist—the question is open even in the case d = 6.

Much work has been done investigating the structure and constructing sets of MUBs using
various mathematical objects. Constructions of complete sets of MUBs from the early 1980s
used complex periodic sequences [5] and commutative subsets of Hermitian matrices [6]. Weil
sums over Galois fields and Galois rings were used in [3, 7] to generalize these constructions to
all prime powers. More recent constructions use orthogonal unitary matrices [8] and discrete
phase space [9]. However, the aforementioned constructions rely on the properties of primes
and prime powers and hence do not generalize to constructions in non-prime power dimensions
[10].

There can be a maximum of d − 1 mutually orthogonal Latin squares (MOLS) of side
length d [4, section 3.2, theorem 3.25]. Sets of d − 1 MOLS of side length d are said to be
complete and are known to exist if d is a prime power. In the case of MOLS of side length 6,
it can be shown that there is no complete set—in fact only one Latin square of side length 6
exits [4, theorem 3.39].

Complete sets of MOLS are equivalent to finite affine planes. There has been a complete
classification of Affine planes into the seven Lenz–Bartolli groups [11] but not all of these
groups have known examples. The Desarguesian planes are constructed from cosets in a vector
space over a finite field. Paterek et al [12] use MOLS equivalent to the Desarguesian planes
to construct MUBs and claim that given a complete set of MOLS, a complete set of MUBs
can be constructed. All known constructions of complete sets of MOLS (and therefore affine
planes) use Galois fields in some way [11, p 219]. For further information on constructions
of planes and MOLS we refer to [11]. As there is much more known about Latin squares
than MUBs, there has been a greater focus on constructing sets of MUBs from sets of MOLS.
We take the opposite approach and construct complete sets of MOLS from complete sets of
MUBs in the case d an odd prime.

Roy and Scott [13, theorem 4.2] show that given a planar function a complete set of
MUBs can be constructed. The planar functions are used to construct the vectors of the
set of MUBs. Our construction of MOLS from MUBs could be considered a converse of
the [13] construction, in that it relies on planar functions. However, our construction does
not rely on planar functions having generated the vectors in the set of MUBs, but on planar
functions generating the inner products between these vectors. Furthermore, in this paper we
also construct MOLS from a set of MUBs, where the set of MUBs are not generated by planar
functions.

Here we show a way to construct MOLS from MUBs in the odd prime case. We conjecture
that this construction will work for any MUBs constructed using characters of polynomials.
In section 2, we detail the necessary definitions and preliminary results. Section 3 contains
two examples constructing complete sets of MOLS from complete sets of MUBs. Section 4
gives a proof that this construction works for the two different MUBs’ constructions for all
odd prime dimensions.
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2. Preliminaries

2.1. Mutually unbiased bases (MUBs)

A basis for C
d is orthonormal if all basis vectors are orthogonal and of unit length.

Definition 1. Two orthonormal bases B and B′ of the space C
d are mutually unbiased if and

only if they satisfy

|〈φ|ψ〉|2 = 1

d
(1)

for all φ ∈ B and ψ ∈ B′.

Let N(d) be the maximum number of MUBs in C
d .

Theorem 1 [3, equation (9)]. N(d) � d + 1.

Thus we call a set of d + 1 MUBs in C
d a complete set of MUBs.

Theorem 2 [7, lemma 3]. Let d = p
a1
1 p

a2
2 . . . par

r be the prime power decomposition of d.
Then

N(d) � min
{
N

(
p

a1
1

)
, N

(
p

a2
2

)
, . . . , N

(
par

r

)}
. (2)

This is referred to as the ‘reduce to prime powers’ construction.

2.2. Mutually orthogonal Latin squares (MOLS)

A Latin square is an n × n array, with each of n symbols appearing exactly once in each row
and each column. A striation is a partition of a set of points into a set of d lines which are
parallel. Two striations A and B of the set X are unbiased if each line of partition A contains
exactly one element in common with each line of partition B. We are working with a set of n2

cells, which have been arranged into an n × n array. A Latin square represents three mutually
unbiased striations, the set of rows (the row striation), the set of columns (the column striation)
and the sets of cells which contain the same symbol (the Latin striation).

Two Latin squares A and B of the same order are orthogonal if the Latin striations of the
squares are unbiased. Mutually orthogonal Latin squares (MOLS) are pairwise orthogonal.
A set of s MOLS is equivalent to s + 2 mutually unbiased striations: the row striation,
column striation and s Latin striations. Each Latin square represents the same row and
column striations, as they have the same arrangement of cells. Each of the s MOLS have
a different arrangement of symbols within the cells, and hence represent different Latin
striations.

Many of the counting theorems for MOLS are similar to those for MUBs. Let M(d) be
the maximum number of MOLS of side length d.

Theorem 3 ([4, theorem 3.25]). For d > 1, M(d) � d − 1.

Thus if we are counting striations instead of MOLS, theorem 3 would be entirely analogous
to theorem 1.

Theorem 4 ([4, theorem 3.28]). For d = pn a complete set of MOLS exists.

The following is analogous to theorem 2.

3
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Theorem 5 ([4, theorem 3.26]). M(xy) � min{M(x),M(y)}.

The combinatorial similarities between projective planes and complete sets of MUBs have
been noted in the conjecture in [1] and since there exist (projective and affine) planes of order
n if and only if there exist n − 1 MOLS of side length n [11], we can reframe the conjecture
in [1] as follows:

Conjecture 1. The non-existence of a complete set of MOLS of side length d implies the
non-existence of a complete set of MUBs in C

d .

In addition, the Bruck–Ryser–Chowla theorem [14] shows that complete sets of MOLS
cannot exist for a certain set of composite sizes, in particular the small values of 6, 14, 21. It
has also been shown through exhaustive computation that there is no complete set of MOLS
of side length 10 [15]. Thus, if there is a concrete connection between MOLS and MUBs,
then results such as the Bruck–Ryser–Chowla theorem could be used to show non-existence
of complete sets of MUBs in certain dimensions.

3. Two examples of constructing MOLS from MUBs

Given a complete set of MUBs we can construct a complete set of MOLS in odd prime
dimensions. This construction will be shown to work for two known constructions of MUBs
(theorems 6 and 7). This could be considered the converse of known constructions which
have focused on constructing MUBs from MOLS [12, 13, 16]. Our construction exploits the
properties of the polynomials which generate the MUBs. We illustrate the construction using
an example in C

3.
The following result is obvious and important in the construction.

Lemma 1. Let ωp = e
2iπ
p .

np∑
k=1

ωk
p = 0, n ∈ N. (3)

When p is a prime, this summation is unique.

We begin with a known construction of complete sets of MUBs.

3.1. Wootters and Fields type MUBs

Let Fq be the Galois field of order q.

Theorem 6 ([3] extended in [7, theorem 2]). Let p be an odd prime with pn = q. For
a, b ∈ Fq , the set of vectors given by

wab = 1√
q

(
ωtr(ax2+bx)

p

)
x∈Fq

(4)

and the standard basis form a complete set of MUBs in C
q .

4
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In the case q = 3 the complete set of MUBs is

S W0 W1 W2

s0=
⎛
⎝

1
0
0

⎞
⎠ w00= 1√

3

⎛
⎝

1
1
1

⎞
⎠ w10= 1√

3

⎛
⎝

1
ω

ω

⎞
⎠ w20= 1√

3

⎛
⎝

1
ω2

ω2

⎞
⎠

s1=
⎛
⎝

0
1
0

⎞
⎠ w01= 1√

3

⎛
⎝

1
ω

ω2

⎞
⎠ w11= 1√

3

⎛
⎝

1
ω2

1

⎞
⎠ w21= 1√

3

⎛
⎝

1
1
ω

⎞
⎠

s2=
⎛
⎝

0
0
1

⎞
⎠ w02= 1√

3

⎛
⎝

1
ω2

ω

⎞
⎠ w12= 1√

3

⎛
⎝

1
1
ω2

⎞
⎠ w22= 1√

3

⎛
⎝

1
ω

1

⎞
⎠

We call S the standard basis, and W0,W1,W2 the non-standard bases where ω = e
2iπ
3 . Using

lemma 1, the first standard basis vector may be written as

s0 =
⎛
⎝

1
0
0

⎞
⎠ = 1

3

⎛
⎝

1 + 1 + 1
1 + ω + ω2

1 + ω2 + ω

⎞
⎠ . (5)

This can be written as a linear combination of various non-standard bases vectors, e.g.

s0 = 1√
3

⎛
⎝ 1√

3

⎛
⎝

1
1
1

⎞
⎠ +

1√
3

⎛
⎝

1
ω

ω2

⎞
⎠ +

1√
3

⎛
⎝

1
ω2

ω

⎞
⎠

⎞
⎠

= 1√
3
(w00 + w01 + w02). (6)

In all s0 can be written as six different linear combinations of non-standard bases vectors:

s0 = 1√
3
(w00 + w01 + w02) (7)

= 1√
3
(w10 + w11 + w12) (8)

= 1√
3
(w20 + w21 + w22). (9)

s0 = 1√
3
(w00 + w10 + w20) (10)

= 1√
3
(w01 + w11 + w21) (11)

= 1√
3
(w02 + w12 + w22). (12)

Then ignoring the scalar 1√
3
, the vectors may be arranged in an array (13), with the row

striation representing the vectors which appear in linear combinations of (7)–(9), and the
column striation representing the vectors which appear in the linear combinations of (10)–
(12).

w00 w01 w02

w10 w11 w12

w20 w21 w22

(13)

5
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This array (13) is the structure we will use to build Latin squares. Since we have the row and
column striations, we now require a further striation to give the symbols for the Latin square.

Finding three representations of s1 requires using weights. Note that we have used ω3 to
clearly differentiate ω from w:

s1 = 1
3

(
w00 + ω2

3w01 + ω3w02
)

(14)

= 1
3

(
ω2

3w10 + ω3w11 + w12
)

(15)

= 1
3

(
ω3w20 + w21 + ω2

3w22
)
. (16)

Here we get the same vectors in each of the linear combinations as in (7)–(9) which represent
the rows striation. This is unsurprising as any vector may be written as a linear combination
of the vectors in each base. This time there are weights, which when arranged according the
array (13), gives an interesting pattern, in this case of a Latin square:

Weights
1 ω2 ω

ω2 ω 1
ω 1 ω2

(17)

The next three representations of s1 give us another mutually unbiased striation:

s1 = 1
3

(
w00 + ω3w11 + ω2

3w22
)

(18)

= 1
3

(
ω2

3w01 + w12 + ω3w20
)

(19)

= 1
3

(
ω3w02 + ω2

3w10 + w21
)
. (20)

The groupings according to (18)–(20) can be organized into the Latin square below (21).
The vectors used in (18) are represented by ♥, the vectors used in (19) are represented by ♦
and the vectors used in (20) are represented by ♣. This gives us a Latin square in the vectors.
The weights form the same arrangement as (14)–(16), which can be seen in (17). The weights
Latin square and vectors Latin square are orthogonal to each other:

Vectors
♥ ♦ ♣
♣ ♥ ♦
♦ ♣ ♥

(21)

Repeating this for a further standard basis vector we get another three equations which
form the row striations and three equations which form a Latin striation in the vectors, and
in the weights. The two vector Latin striations are orthogonal, as are the two weights Latin
striations:

Vectors Weights

s1

♥ ♦ ♣
♣ ♥ ♦
♦ ♣ ♥

1 ω2 ω

ω2 ω 1
ω 1 ω2

s2

♥ ♦ ♣
♦ ♣ ♥
♣ ♥ ♦

1 ω ω2

ω2 1 ω

ω ω2 1

(22)

6
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By using the linear combinations of the vectors for the MUBs construction of theorem 6
we have constructed a complete set of MOLS. This construction also yields a complete set of
MOLS in the weights.

3.2. Alltop type MUBs

There are other constructions of complete sets of MUBs. The following construction has been
shown to be unitarily equivalent to theorem 6 [17]. However, it behaves slightly differently
with our linear combinations.

Theorem 7 ([5] extended in [7, theorem 1]). Let p be an odd prime � 5, with pn = q. For
a, b ∈ Fq , the set of vectors given by

vab = 1√
q

(
ωtr((x+a)3+b(x+a))

p

)
x∈Fq

(23)

and the standard basis form a complete set of MUBs in C
q .

When using the construction of theorem 7, a complete set of MOLS is constructed in the
vectors of the linear combinations, but the weights form Butson Hadamard Matrices (see [18,
section 4]). For example for q = 5, we get the following set of MOLS and Butson Hadamard
matrices:

s1

Vectors
♥ ♦ ♣ ♠ �
♦ ♣ ♠ � ♥
♣ ♠ � ♥ ♦
♠ � ♥ ♦ ♣
� ♥ ♦ ♣ ♠

Weights
ω4 ω3 ω2 ω 1
ω3 ω ω4 ω2 1
ω4 ω ω3 1 ω2

ω4 1 ω ω2 ω3

1 1 1 1 1

s2

♥ ♦ ♣ ♠ �
♣ ♠ � ♥ ♦
� ♥ ♦ ♣ ♠
♦ ♣ ♠ � ♥
♠ � ♥ ♦ ♣

ω2 1 ω3 ω ω4

ω2 ω4 ω ω3 1
ω4 1 ω ω2 ω3

1 1 1 1 1
ω2 ω 1 ω4 ω3

s3

♥ ♦ ♣ ♠ �
♠ � ♥ ♦ ♣
♦ ♣ ♠ � ♥
� ♥ ♦ ♣ ♠
♣ ♠ � ♥ ♦

ω3 1 ω2 ω4 ω

ω3 ω4 1 ω ω2

1 1 1 1 1
ω 1 ω4 ω3 ω2

ω3 ω ω4 ω2 1

s4

♥ ♦ ♣ ♠ �
� ♥ ♦ ♣ ♠
♠ � ♥ ♦ ♣
♣ ♠ � ♥ ♦
♦ ♣ ♠ � ♥

ω ω2 ω3 ω4 1
1 1 1 1 1
ω 1 ω4 ω3 ω2

ω ω4 ω2 1 ω3

ω2 ω4 ω ω3 1

(24)

Again we have exploited the linear combinations of the vectors in a complete set of MUBs
to produce a complete set of MOLS. In the next section, we prove that the complete set of
MOLS will always be generated for the theorem 6 and theorem 7 constructions in odd prime
dimensions.

7
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4. Algebraic construction of MOLS

4.1. MOLS from planar functions

The construction of theorem 6 uses planar functions to construct the vectors of the set of MUBs.
Let G and H be arbitrary finite groups, written additively, but not necessarily commutative. A
function f : G → H is called a planar function if for every non-identity a ∈ G the functions
�f,a : x → f (a + x) − f (x) and �f,a : x → f (x) + f (x + a) are bijections [20].

Planar functions [11] can be used to construct complete sets of MOLS (see theorem 8
below). However, there are MOLS that cannot be constructed via a planar function, for
example see the construction of affine planes [21]. Planar functions have also been used to
construct complete sets of MUBs [13]. Note that quadratic functions are planar for all finite
fields [19].

The vectors of theorem 7 are not constructed using planar functions. However, the inner
product between any two (non-standard basis) vectors in the set of MUBs in theorem 7 can be
calculated using a quadratic function, which is planar. Both the vectors and the inner product
vectors (definition 2) of the theorem 6 construction are from quadratic functions. The key to
our construction is the functions which describe the inner products.

Definition 2. The inner product vector, IPV [u,w], of two vectors u,w can be generated
by IPV [u,w]i = vi = uiwi where v = (v1, v2, . . . , vn), u = (u1, u2, . . . , un) and
w = (w1, w2, . . . , wn).

In both the theorems 6 and 7 constructions, vector u is constructed from a function fu
by u = (

ω
tr(fu(x))
p

)
x∈Fp

. Hence we may call fu the function of u, and consequently, the inner
product vector can be constructed from the function fv(x) = fu(x) − fw(x) by

IPV [u,w] = (
ωtr(fu(x)−fw(x))

p

)
x∈Fp

. (25)

The inner product is easily recovered from the inner product vector by summing the entries in
the inner product vector.

Given that we are only working with prime dimensions, the trace map is an identity
function, and we are really looking at features of the polynomials.

Theorem 8 ([20, theorem 5.3]). Let f be a planar function on the group G, and let
a ∈ G∗ = G\0. Then La(x, y) = f (x)− f (x − a) + y, a �= 0 constructs a Latin square. The
set La : a ∈ G∗ forms a complete set of MOLS.

We can take a variation on this, interchanging rows and columns (hence La(y, x))
and permuting the symbols by multiplication by 3. For d = 5, let f (x) = x2. Then
La(y, x) = 3(f (x) − f (x − a) + y) generates the MOLS constructed from the theorem 6
construction (array (22)), and La(y, x) = f (x)− f (x − a) + y for the theorem 7 construction
(array (24)). However, this is not how they have been constructed in the previous section.

Theorem 9 ([20, theorem 5.2]). The MOLS generated from f (x) and f (ax + b) + c are
equivalent.

Therefore any MOLS generated from any quadratic equations are equivalent. The MUBs
generated from the theorem 6 and theorem 7 constructions have equivalent sets of inner product
vectors. Thus, they form the same set of MOLS. The two constructions are equivalent as their
sets of inner product vectors are equivalent. This is not surprising given the result of [17]
that the two constructions are equivalent. Reference [17] shows this by providing a unitary
mapping for the vectors in theorem 7 to the vectors in theorem 6. Looking at inner product
vectors may yield a more general way of determining equivalences of sets of MUBs.

8
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4.2. Proof of our construction of MOLS

There are p standard basis vectors; hence for each z ∈ Fp there is a standard basis vector sz.
Any vector may be written as a linear combination of other vectors. Thus,

sz =
∑
i∈P

mizvi (26)

where P is some set of vector labels, vi is the vector and miz is the weight assigned to that
vector in linear combinations which sum to sz.

The outline of the construction and proof: for each z ∈ Fp we choose the weight that will
be assigned to each vector. We then choose the vectors that will (with their weights) form a
linear combination that represents sz. We show that for each z we produce the same ‘row’
striation. For each z we also produce another striation. These striations are unbiased to the
‘row’ striation and to each other. We call the striation associated with z = 0 the ‘column’
striation and the ones associated with 1 � z � p − 1 the Latin striations. Each of the Latin
striations from each of the non-zero values of z are orthogonal to each other giving p−1 Latin
squares.

Let

vab = 1√
q

(ωtr(fab(x)))x∈Fq
. (27)

Any vector can be expressed as a linear combination of the vectors of a base. This
grouping of vectors into bases gives the row striation. For each z ∈ Fp, the weight mabz is
assigned to vab. We want to represent sz, in a linear combination, where all summands have
the same magnitude. Thus we are most interested in the phase of the summands. We want the
zth component of mabzvab to be 1

q
, and hence

mabz = 1√
q

ω−tr(fab(z)). (28)

Thus, the elements in the linear combinations representing sz are

mabzvab = 1

q
(ωtr[fab(x)−fab(z)])x∈Fq

(29)

By choosing the vectors to be all from the same base we fix a. We find that for each
choice of a and each choice of z∑

b∈Fp

mabzvab = sz. (30)

This gives us p copies of the row striation. For example, equations (7)–(9) and (14)–(16) show
two copies of the row striation, the third copy has been omitted as a repetitious calculation.

In the theorem 6 construction fab is a planar function, so it is no surprise that the arrays
of weights are Latin squares (as in (17)). In the theorem 7 construction fab is not a planar
function, and so the arrays of weights are not Latin squares (see (24)).

Next we create the non-row striations using the same weights assigned to each vector,
but different groupings of vectors. Note that in (14)–(16) and (18)–(20) each vector has
the same weight assigned. In order to create a linear combination involving mabzvab which
contains vectors not in the same basis, we first choose one vector e.g. v0c, and see which
elements can form the appropriate summation. To sum to sz, we need (mabzvab)z = 1 and
(mabzvab)x �= (m0czv0c)x for all x �= z. Hence, we need

ωtr[fab(x)−fab(z)] �= ωtr[f0c(x)−f0c(z)] ∀z �= x, a �= 0. (31)

9
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Thus, if (31) is satisfied for z = 0 then this grouping forms the column striation and we
prepare an array e.g. (13). If (31) is satisfied for z �= 0 then the cell in the prepared array
corresponding to vab shall contain the cth symbol. For example in array (21), ♥ is the 0th
symbol, ♦ is the 1st symbol and ♣ is the 2nd symbol.

In our simplified situation we only deal with prime fields and hence the trace function is
equivalent to the identity function. Thus without loss of generality (31) may also be simplified
to

[fab(x) − f0c(x)] − [fab(z) − f0c(z)] �= 0 ∀z �= x, a �= 0. (32)

In (32), [fab(x) − f0c(x)] is the function of the inner product vector IPV [vab, v0c].
[fab(z) − f0c(z)] represents the zth position of the inner product vector. It is the functions of
the inner product vectors that create the MOLS, not the functions of the vectors themselves.

Theorem 10. Let fab be as in theorem 6 or theorem 7 with a, b ∈ Fp, p a prime. The
set of 4-tuples (a, b, c, z) ∈ F

4
p that satisfy equation (32) (with an appropriate permutation

σ(b) = b′) form a complete set of MOLS, where a is the row number, b′ is the column number,
c is the symbol number and z is the striation number.

Permutations are not required for the theorem 6 construction. A permutation on b is
required for the theorem 7 construction. A more general proof may be developed to include
further classes of polynomials, with more general permutations.

Proof. Let fab = ax2 + bx as in theorem 6. Let gab = (x + a)3 + b(x + a) as in theorem 7;
then

[fab(x) − f0c(x)] − [fab(z) − f0c(z)] = a(x2 − z2)+(b − c)(x − z) (33)

= (x − z)[a(x+z) + b − c] (34)

and

[gab(x) − g0c(x)] − [gab(z) − gab(z)] = 3a(x2 − z2)+(3a2 +b − c)(x − z) (35)

= (x − z)[3a(x+z)+3a2 +b − c]. (36)

(1) Given a suitable permutation σ(b) = b′, for each (b′, z) there are exactly p valid (a, c)

with no two of the valid (a, c) containing the same a or the same c. This ensures that
each column of each square contains every symbol only once.

For the construction of theorem 6 the identity permutation b′ = b is used. Fixing b
and z, and letting x = z we solve (34). Inequation (32) requires inequality, so we seek to
solve the statement for equality, knowing that the values which solve for equality will not
solve the inequation:

a(2z) + b − c = 0. (37)

For each a there is a unique c that solves this equation and hence there are p pairs (a, c).
If x �= z, then none of those pairs (a, c) will be solutions to (37), and hence satisfy (32).

For the construction of theorem 7 the permutation b′ = b + 3a2 is required. Fixing b
and z and setting x = z we solve (36)

3a(2z) + 3a2 + b − c = 3a(2z) + b′ − c = 0. (38)

For each a there is a unique c that solves (38) and hence there are p pairs (a, c). If x �= z

then none of these pairs (a, c) will be solutions to (38), and hence satisfy (32).
Note that in (32) we require a �= 0, as this yields the solution b = c giving one of the

pairs that solve (34) and (36). This shows that the first row of every square is in standard
form.
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(2) For each (a, z) there are exactly p valid pairs (b′, c). No two of the valid pairs (b′, c)
contain the same b′ nor the same c. This ensures that each row of each square contains
every symbol exactly once.

If we fix a and z and set x = z, then we solve equations (37) and (38). In the
theorem 6 construction c = 2az − b′, and in the theorem 7 construction c = 6az − b′.
Thus for each b′ there is a unique c. There are p values of b′ and hence p valid pairs (b′, c)
for each (a, z).

(3) For each (a, b′), a �= 0 there are exactly p valid pairs (c, z). No two of the valid pairs
(c, z) contain the same c, nor the same z. This shows that each cell (other than cells in
the first row) has a different symbol in each square, which ensures that all of the squares
are mutually orthogonal. There are p − 1 Latin striations, and 1 column striation.

For the construction of theorem 6 we try to solve

(x − z)[a(x + z) + b − c] = 0 (39)

Assuming x �= z we require a solution to (37). If we fix c �= b, then for each x there is a unique
z that solves (39). There are p combinations of x and z that solve equation (39). One of these
combinations will be of the form x = z. If we select this z to fill in the 4-tuple (a, b′, c, z),
then (32) is satisfied. If we allow c = b, then either a = 0, which represents the symbol in
the b′th column, 0th row of each square; or z = 0, which creates a column striation. Hence
there are p pairs (c, z).

For the construction of theorem 7 we try to solve

(x − z)[3a(x + z) + b′ − c] = 0 (40)

Then follow the argument for the theorem 6 case.
Properties 1, 2 and 3 combine to show that the set of 4-tuples (a, b′, c, z) represents a

complete set of MOLS. �

Conjecture 2. Let f be a set of functions f : Fp → Fp, which construct a complete set
of MUBs in dimension p. The set of 4-tuples (a, b, c, z) that satisfy equation (32), with an
appropriate permutation σa(a) = a′, σb(b) = b′, σc(c) = c′, σz(z) = z′ form a complete set
of MOLS, where a′ is the row number, b′ is the column number, c′ is the symbol number and
z′ is the striation number.

That is, any two IPV from vectors in different bases have exactly one position where their
entries are the same.

5. Conclusion

The research in this paper points to subtleties within the construction of MUBs—the need
for planar functions, but only in the inner products. It also gives valuable insight into the
connection between MUBs and MOLS and suggests the possibility of MOLS giving rise to
more MUBs in non-prime dimensions than the product construction does—see for example
the conclusion in the paper by Wocjan and Beth [22].

Both of the constructions presented generate the same set of MOLS, showing that multiple
sets of MUBs can be associated with each set of MOLS. Also the MUBs constructed in
theorem 6 are obtained via characters of the polynomial x2, and since this is a planar function
which gives a Desarguesian plane (see [20]), the MUBs obtained could be considered to be
connected to the same. The polynomial in the case of theorem 7 is not a quadratic and is
non-planar. Perhaps there are new constructions of MUBs which use non-planar functions,
which however have planar functions hidden in the structure.
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The main question yet unanswered is whether this construction can be extended to all
prime powers, odd and even, and to other constructions of MUBs, e.g. [13]. The authors are
currently working on the odd prime power case, and also hope to extend the construction to
the even prime powers. It should be noted that the known construction of MUBs in the even
power case [7] is different from the construction in the odd prime power case, since it is based
on Galois rings and not Galois fields. A summary of open question can be found in [23].
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[9] Šulc P and Tolar J 2007 J. Phys. A: Math. Theor. 40 15099–112

[10] Archer C 2005 J. Math. Phys. 46 022106
[11] Dembowski P 1997 Finite Geometries (Classics in Mathematics) (Berlin: Springer) (reprint of the 1968 edition)
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